Problem Set 2, Question 2

Statistics 506, Fall 2017

Solution

The solution here has more detailed discussion of what we are trying to accomplish than your needs to have.
Your solution should clearly separate parts a, b, and ¢ and producec a reasonable looking plot.

Data Prep

First we read in the data an prepare our workspace.

load packages
library(tidyverse)
library(stringr)

read data

social = read_delim(
'https://jbhender.github.io/Stats506/Stats506_F17_ps2_interactions.csv',
delim=',")

focal = read_delim(
'https://jbhender.github.io/Stats506/Stats506_F17_ps2_focal_names.csv',
delim=',', col_names = "Name")

comm = read_delim(
'https://jbhender.github.io/Stats506/Statsb06_F17_ps2_all names.csv',
delim=',', col_names = "Name")

Part a

Reformat the data as a data-frame with one row per interaction type for each focal individual
in the first column. The reformatted data should have columns for all individuals counting
the frequencies of each interaction type with each focal individual. You will need to so some
data cleaning to match misspelled names to the name list provided.

Our basic approach here will be to first split the delimited column toward into indvidual rows. The first
approach below does this using tidyr: :separate followed by gather. This can be done more tidily using
tidyr: :separate_rows but I'll leave this here as an example of figuring out how to use limited tools to
accomplish what you want.

Separating toward

We first need to split the names from toward into a form more conducive to comparing names to the provided
lists.

A longer approach

To begin find the maximum number of names in toward and separate these into columns. You can then
gather the columns to create a data frame with one row per interaction.

max length of 'toward' list

to_split = sapply(str_split(social$toward, ','), length)
#sum(to_split) # want this many rows at end

max_sep = max(to_split)

separate toward into columns
social_sep = social %>%
separate(toward,paste0("ID",1:max_sep),sep=",",
extra="merge",fill="right")
#head (social_sep)

gather those columns and discard position
individual = social_sep %>%
gather (IDx,toward,ID1:ID13, na.rm=TRUE) %>%
select (-IDx)
#head (individual)

A tidy approach

We could do the above more compactly using separate_rows:

ind2 = social %>%
separate_rows(toward, sep=",")
all.equal(individual, ind2)

[1] TRUE

Fix typos in names

Next, we can check the names in focal and toward against the provided lists.

Focal mames are all present

sum(individual$focal %in% focal$Name) == nrow(individual)
[1] TRUE

These require cleaning. There are too many to do by hand.
sum(individual$toward %in}% comm$Name) == nrow(individual)

[1] FALSE

individual = individual %>%
mutate (Matched=individual$toward %in’, comm$Name)
table (individual$Matched)

##
FALSE TRUE
16110 7851

head(individual %>% filter(!Matched))

A tibble: 6 x 4

focal behavior_cat toward Matched
<chr> <chr> <chr> <lgl>
1 Tadd groom NIcolas FALSE
2 Zahra mate Aham FALSE
3 Elisa share Nlan FALSE

4 Elisa aggression ? FALSE
5 Kenyota mate LaquiNton FALSE
6 Marijane approach CoLene FALSE

tail (individual$toward)

[1] " Fareed" " Manny" " Daved" " Autumn" " Kade" " Diandra"

In the original call to separate (or separate_rows) I split on "," which would leave white space at the
front of all but the first name. Let’s remove that whitespace and also ensure consistent capitalization. Then
we can remove any rows labeled "7".

changing cases and trimming whitespace takes care of most issues
but there are still too many to do by hand
individual = individual %>%
mutate(toward = str_trim(str_to_title(toward)),
Matched= toward %in) comm$Name)
table(individual$Matched)

##
FALSE TRUE
1468 22493

head(individual %>% filter(!Matched))

A tibble: 6 x 4

focal behavior_cat toward Matched

<chr> <chr> <chr> <lgl>

1 Zahra mate Aham FALSE

2 Elisa share Nlan FALSE

3 Elisa aggression ? FALSE

4 Francia mate Aquel FALSE

5 Shoshannah carry Ia FALSE

6 Francia share 7 FALSE

Remove 7 and "" after recording instances.

n_rm_gm = with(individual,sum(toward=="7" | toward=="", na.rm=TRUE))

individual = individual %>%
filter (!{toward=="7" | toward==""})
table (individual$Matched)

##
FALSE TRUE
291 22493

head(individual %>% filter(!Matched))

A tibble: 6 x 4

focal behavior_cat toward Matched
<chr> <chr> <chr> <lgl>
1 Zahra mate Aham FALSE
2 Elisa share Nlan FALSE
3 Francia mate Aquel FALSE
4 Shoshannah carry Ia FALSE
5 Marijane groom Threas FALSE
6 Zahra groom Cpriano FALSE

We are now down to 291 unmatched names. We can try to match these using string distances in agrep or

adist. In this case, I am going to assume deletions are more likely than insertions or substitutions. You
were not required to make a similar assumption.

Use approxzimate matching to search for others.
fuzz_match = lapply({individual %>% filter(!Matched)}$toward,
agrep, x=comm$Name,
value=TRUE, # Value true returns wvalue and not indezx.
fixed=TRUE, ignore.case=TRUE,
max.distance=list(insertions=0L,
deletions=1L, #Match with at most one deletion
substitutions=0L
)
)
amatch_length = sapply(fuzz_match,length)
table(amatch_length)

amatch_length
1 2 3 4 5 7 16 22 28 57
245 29 4 7 1 1 1 1 1 1

to_match = {individual %>% filter(!Matched)}$toward[which(amatch_length>1)]

Let's replace the unique matches assuming one deletion in the

original data.

First the locations

ind_one_del = with(individual, which(!Matched) [which(amatch_length==1)])
These are mames, because we set value=T

names_one_del = unlist(fuzz_match[which(amatch_length==1)])

Double check the indexing:
rplcmnt = with(individual, cbind(toward[ind_one_del], names_one_del))
table(apply (rplcmnt, 1, function(x) adist(x[1], x[2], ignore.case=TRUE)))

##
1
245

Replace
individual$toward[ind_one_del] = names_one_del
individual$Matched[ind_one_del] = TRUE

Update to_match
to_match = {individual %>}, filter(!Matched) }$toward

We found 245 matches with at most a single deletion and updated the rows of individual accordingly. Can
we do anything with the rest? Let’s compute string distances, again preferring deletions to insertions and
both to substitutions.

For long matches, use adist

Convert to lower as dist("Abc","bec") < dist("Abc", "Bc")
match_dist = adist(str_to_lower(to_match), str_to_lower (comm$Name))
best = apply(match_dist,1,function(x) which(x==min(x)))

38 of 46 have a single best match
table(sapply(best,length))

##

1 2
38 8

View them to spot check.

#cbind (to_match[which(sapply(best, length)==1)],

comm$Name [unlist (best [which (sapply(best, length)==1)])]
#)

Prdoduce a matrixz of all cases with more than one best match
cbind(to_match[which(sapply(best,length)>1)],
sapply(best [which(sapply(best,length)>1)],

function(x){
paste (comm$Name [x] ,collapse = ", ")
}
)
)
[,1] [,2]
[1,] "Amon" "Aron, Almon"
[2,] "Armn" "Aron, Armin"
[3,] "Taitha" "Tabitha, Tamitha"
[4,] "Armn" "Aron, Armin"
[5,] "Ela" "Lela, Kla"
[6,] "Shann" "Shane, Shanyn"
[7,] "Jamai" "Jamari, Jamail"
[8,] "Arris" '"Parris, Farris"

In the first two cases above, one match involoves a subsitution and the other a deletion. Below we repeat
with the stated preference.

Repeat best matches with higher costs for insertions and subsititutions

match_dist = adist(str_to_lower(to_match), str_to_lower (comm$Name),
cost=1list(ins=2, deletions=1, sub=4))

best = apply(match_dist,1,function(x) which(x==min(x)))

best_length = sapply(best, length)

table(best_length)

best_length
1 2
43 3

Remaining are entirely ambiguous
cbind(to_match[which(sapply(best,length)>1)],
sapply(best [which(sapply(best,length)>1)],

function(x){
paste(comm$Name [x] ,collapse = ", ")
}
)

)

[,1] [,2]

[1,] "Taitha" "Tabitha, Tamitha"

[2,] "Jamai" "Jamari, Jamail"

[3,] "Arris" "Parris, Farris"

Now we can replace the matches we found and remove the rest.

First the locations
ind_one_best = with(individual, which(!Matched) [which(best_length==1)])

Now get the names
names_one_best = comm$Name [unlist(best[best_length==1])]

Double check the indexing:
rplcmnt = with(individual, cbind(toward[ind_one_best], names_one_best))
table(apply(rplcmnt, 1, function(x) adist(x[1], x[2], ignore.case=TRUE)))

##
1
43

Do the replacement and filter others
individual$toward[ind_one_best] = names_one_best
individual$Matched[ind_one_best] = TRUE

individual = individual %>% filter(Matched)
#dim(individual)

Computing frequencies

Now that we have a clean data set, we can can compute frequencies and reshape into wide format.
freq =

individual %>%

group_by(behavior_cat, focal, toward) %>%

summarize(freq = n()) %>%

spread(toward,freq, £ill=0) ¥%>% ungroup()

Part b

For each interaction type, compute pair-wise canberra distances measuring the similarity be-
tween pairs of focal animals. See the R help page for dist() for additional details.

I will approach this by writing a function to return a matrix with focal as rownames for a given behavior.

behavior_distance = function(df, behavior='aggression'){
df = df %>% filter(behavior_cat == behavior)
mat = as.matrix(df %>’ select(-focal, -behavior_cat))
rownames (mat) = df$focal

dist(mat, method='canberra')

dist_mats = lapply(unique(freq$behavior_cat), behavior_distance, df=freq)
attr(dist_mats, 'names') = unique(freq$behavior_cat)

Part ¢

Use multidimensional scaling to find a two-dimensional embedding of the pairwise distances.
Use the MDS coordinates to produce plots showing the relations among animals for each

interaction type. Present these plots as a single figure faceted by interaction type.
We can apply cmdscale to each distance matrix, save the coordinates, and reshape the data for plotting.

dist_MDS = lapply(dist_mats, cmdscale)

Convert each set to a tibble and join with bind_rows
make_tibble = function(i){
as.tibble(dist_MDS[[i]]) %>%
mutate (Names=rownames (dist_MDS[[il]),
Behavior=names(dist_MDS) [[i]]) %>%
select (Behavior, Names, V1, V2)
}

mds = bind_rows(lapply(l:length(dist_MDS), make_tibble))

Finally, we can do some plotting.

mds %>%
ggplot(aes(x=V1, y=V2)) +
facet_wrap(~Behavior) +
geom_point () +
ylab('MDS Coordinate 2') + xlab('MDS Coordinate 1')

aggression approach carry
L4 °
°
40 9 . ® PY [] ° [y ° ‘ a '
(1) °) ° °
0- o® W ° [] [J
“. .‘ > s ° o® o .. o ° :.
° °
-40 - = T oy °
o~ groom mate play
c 40- o ® O—= P
° ° 5 LY O ° o
5 o0- % O %o o« o K
@] [] ..) L4 [}) .. =
((;)) -20- & - - ° °
) °
= -50 0 50 -50 0 50
share
°
40- @
D
0- .¢“ (™ ®
(]
40 - °
40 °
-50 0 50

MDS Coordinate 1

Since we distinct groups for some behaviors, we may want to determine whether these are the same accross
behvaiors. You were not required to do this, but here is one approach using kmeans.

Find clusters and associate with names
km = kmeans(mds %>}, filter(Behavior == 'groom') %>% select(Vi, V2), 2)

cluster = km$cluster

attr(cluster, 'names') = {mds %>% filter(Behavior == 'groom')}$Names

mds = mds %>Y%
mutate(Cluster

Cluster = sprintf('Cluster %s', Cluster)

)

Now we can color by cluster in the plot.

mds %>%

ggplot(aes(x=V1l, y=V2, color=Cluster)) +
facet_wrap(~Behavior) +
geom_point (alpha=.5) +

ylab('MDS Coordinate 2') + xlab('MDS Coordinate 1')

aggression

40 -

_40 -

groom

MDS Coordinate 2
o

share

approach

mate

=50 0 50

50
MDS Coordinate 1

cluster[match(Names, names(cluster))],

=50

carry
play
Cluster
Cluster 1
Cluster 2
1 1
0 50

	Solution
	Data Prep

	Part a
	Separating toward
	Computing frequencies

	Part b
	Part c

