Problem Set 2, Question 3: Solution

Statistics 506, Fall 2017

In this question you will design a Monte Carlo study to estimate a well known constant. Your
code should use vectorization where possible.

a. Write a function to generate n iid samples from the square {(z1,z2) : |z1] < 1, |zs] < 1}.

The function rsquare below will generate data from any square centered at the origin.

# Generate n i1d samples from the square centered
# at the origin with the given width.
rsquare = function(n, width=2){

x = runif (2*n,-width/2, width/2)

dim(x) = c(n,2)

X

}

b. Generate data from this function and form a Monte Carlo estimate of the area of the unit
circle {(z1,22) : 22 + 23 < 1}. What well known constant are you estimating?

The unit circle has area w. The estimate 7 = 4p uses the proportion of points in the circle scaled by the area
of the square.

## Estimate pi using the proportion of points in the unit circle
## multiplied by the area of the square.

n = le3

x = rsquare(n, 2)

p_hat = mean(x[,1]72 + x[,2]72 < 1)

est = 4xp_hat

An estimate based on 1000 Monte Carlo samples is & = 3.16.

c. Report your results from part b with a 95% confidence interval. Does your interval cover
the true value?

The the number of points in the circle is Binomial(n, p) and the standard error of the sample proportion p is
V/P(1 = p)/n. Our estimate is 4p which has standard error 41/p(1 — p)/n since var(4p) = 16var(p).

## Our Monte Carlo estimate of the proportion is based on a Binomial(p) distribution.
## var(est) = var(4*p_hat) = 16*%px(1-p)/n

se = 4xsqrt(p_hat*{1-p_hat}/n)

z_a = qnorm(.975)

est_ci = est + c(-1, 1)*z_axse

cover = ifelse(est_ci[l] < pi && est_ci[2] > pi, 'did', 'did not')

A 95% confidence interval for our previous estimate of # = 3.16 is (3.05, 3.26) which did cover the true value
of 3.14. .. on this trial.

d. Repeat part b with n large enough to estimate two significant digits accurately with 99%
confidence. Briefly explain how you chose n and report your estimate with a 99% CI. How
many digits is it accurate to?

An upper bound on the standard error is 44/.5(.5)/n = 2/y/n. For a 99% confidence interval, we need to
use the multiplier z 995 = 2.58. To have accuracy for two significant digits (3.1), we need the width of the
confidence interval to be less than .05. Solving the resulting inequality

22,9952/\/5 <.05 = n> 42’_995/.05



so that n > 4.2e+04. I will round up and use n = 5e5 below.
n = beb

x = rsquare(n, 2)

p_hat = mean(x[,1]172 + x[,2]172 < 1)

est = 4xp_hat

To report how many digits your estimate was accurate to you could set a random seed and compare by
eye, making sure to account for rounding truncated digits. Below is a programmatic option using regular
expressions.
## How many sig digits is est accurate to?
count_sig_digits = function(est, target){

delta = abs(est - target)

no_dec = regexpr('~[0]+', delta)

dec = regexpr('~[0.]+', delta)

if(dec!=1 & no_dec!=1){

return(0)

}

max (attr(no_dec,"match.length"), attr(dec,'"match.length")-1)
}

n_sig = count_sig_digits(est, pi)

In this case, our estimate of 3.141816 was accurate for 3.1415927 to 4 significant digits.

e. Repeat this exercise using the square {(z1,z2) : 0 < z; < 1,0 <29 < 1} and the portion of the
unit circle in the positive quadrant. How do you need to adjust your Monte Carlo estimate to
get an estimator of the same constant? How do you need to modify your confidence interval?
(Hint: var(aX) = a*var(X).)

In the modified question, the area of the square is now 1 but contains only i of the area of the unit circle.
These changes cancel out and our estimate remains 4p with the standard error unchanged.

# Generate n 11d samples from the square with lower
# left corner at the origin.
rsquare2 = function(n, width=1){

x = runif(2*n,0, width)

dim(x) = c(n,2)

X

}

We can use the modified function above to verify that the interval is unchanged.

## Estimate pi using the proportion of points in the unit circle
## multiplied by four as the square contains only one fourth

## of the circle.

n = 5eb

x = rsquare2(n, 1)

p_hat = mean(x[,1]72 + x[,2]72 <= 1)

est = 4xp_hat

se = 4xsqrt(p_hat*{1-p_hatl}/n)

z_a = qunorm(.975)

est_ci = est + c(-1, 1)*z_axse

cover = ifelse(est_ci[1l] < pi && est_ci[2] > pi, 'did', 'did not')

Our new estimate of 3.141 (3.136, 3.145) did cover the true value of the constant .



