In the solutions below, we focus on the answers to part c of each question. For functions please see the corresponding R script at the course git repo.
confint_jackknife()
defined in ps3_q1.R
.confint_boot()
defined in ps3_q1.R
.dose | jackknife | percentile bootstrap | basic bootstrap | normal bootstrap |
---|---|---|---|---|
0.5 | (1.15, 2.17) | (1.24, 2.20) | (1.12, 2.07) | (1.18, 2.13) |
1.0 | (1.16, 1.55) | (1.17, 1.53) | (1.17, 1.54) | (1.17, 1.54) |
2.0 | (0.86, 1.13) | (0.88, 1.13) | (0.86, 1.11) | (0.87, 1.12) |
confint_jackknife_mc()
defined in ps3_q2.R
.confint_boot_mc()
defined in ps3_q2.R
.We use 10,000 Monte Carlo replicates and 10,000 bootstrap samples. The Monte Carlo replicates are split into 10 blocks of 1,000 to avoid allocating too large of vectors in the bootstrap function.
The results are in the table below.
Method | Coverage | Length | Shape |
---|---|---|---|
basic bootstrap | 0.88 (0.88, 0.89) | 2.47 (2.46, 2.49) | 1 (-, -) |
jackknife | 0.94 (0.93, 0.94) | 2.48 (2.46, 2.49) | 1 (-, -) |
normal bootstrap | 1.00 (1.00, 1.00) | 4.38 (4.35, 4.40) | 1.00 (1.00, 1.00) |
percentile bootstrap | 0.93 (0.92, 0.93) | 2.47 (2.46, 2.49) | 1.86 (1.85, 1.86) |