About

This is an example solution to Problem Set 2 for Stats 506 in Fall 2020.

To build this document, run Rscript -e "rmarkdown::render('./PS2_solution.Rmd')" at the command line or bash ps2_make.sh to build this document after running the scripts which prepare the source data.

Question 1

Code Organization

The solution to this question is split into four parts:

  • 0-ps1_q1_data.sh uses the wget shell utility to download needed data.
  • 1-ps1_q1_prep_data.R cleans and creates minimal data files for analysis. This file creates ps2_q1.RData containing 4 tibbles:
    • recs09 - cleaned/minimal 2009 data
    • recs15 - cleaned/minimal 2015 data
    • w09 - replicate weights for the 2009 data
    • w15 - replicate weights for the 2015 data.
  • 2-ps2_q1_analysis.R - defines a function that can be used to estimate either means for numeric or logical variables, and proportions for unique levels in factor or character variables. That function is then used to produce the needed estimates, which are then combined to compute differences.
  • PS2_Solution.Rmd runs 2-ps2_q1_analysis.R and builds the page you are reading. Code for figures and tables can be found here.
  • 3-ps2_make.sh runs the first two data preparation scripts and then builds this document.

Solution

source('./2-ps2_q1_analysis.R')

Number of TVs

The figures and table below compare the average number of televisions per household in 2009 and 2015 by Census Division and rurality.

Figures
cap1a = paste(
  "**Figure 1a.** *Average number of televisions per household.* Estimates use",
  "the 2009 and 2015 RECS data."
)

div_order = {
  tv_n %>%
   group_by(division) %>%
   summarize( tv_n = mean(tv_n), .groups = 'drop' ) %>%
   arrange(desc(tv_n)) 
}[['division']]

tv_n %>%
  mutate(
    division = factor(division, div_order), 
    `Urban Type` = rurality
  ) %>%
  ggplot(
    aes(x = division, y = tv_n, color = year)) +
  geom_point( position = position_dodge(.5) ) +
  geom_errorbar( 
    aes(ymin = tv_n_lwr, ymax = tv_n_upr),
    position = position_dodge(.5), width = 0.2 
  ) + 
  facet_wrap(~`Urban Type`) + 
  coord_flip() +
  theme_bw() +
  scale_color_manual(values = c('darkblue', 'darkred')) + 
  ylab('Average # of televisions') + 
  xlab('')
**Figure 1a.** *Average number of televisions per household.* Estimates use the 2009 and 2015 RECS data.

Figure 1a. Average number of televisions per household. Estimates use the 2009 and 2015 RECS data.

cap1b = paste(
  "**Figure 1b.** *Difference in average number of televisions per household",
  "2015 less 2009.*"
)

div_order = {
  tv_n_diff %>%
   group_by(division) %>%
   summarize( diff = mean(diff), .groups = 'drop' ) %>%
   arrange(desc(diff)) 
}[['division']]

tv_n_diff %>%
  mutate(
    division = factor(division, div_order), 
    `Urban Type` = rurality
  ) %>%
  ggplot( aes(x = division, y = diff, color = `Urban Type`) ) +
  geom_hline(yintercept = 0, lty = 'dashed') + 
  geom_point( position = position_dodge(.5) ) +
  geom_errorbar( 
    aes(ymin = lwr, ymax = upr),
    position = position_dodge(.5), width = 0.2 
  ) + 
  coord_flip() +
  theme_bw() +
  scale_color_manual(values = c('darkred', 'darkblue')) + 
  ylab('Difference in average # of televisions (2015 less 2009)') + 
  xlab('') 
**Figure 1b.** *Difference in average number of televisions per household 2015 less 2009.*

Figure 1b. Difference in average number of televisions per household 2015 less 2009.

Table
cap_tab1 = paste(
 "**Table 1.** *Average number of televisions per household 2009 and 2015.*",
 "Numbers in parantheses represent 95% confidence intervals."
)

tab1 = tv_n %>%
  mutate(
    pretty = sprintf('<div>%4.2f</div> <div>(%4.2f, %4.2f)</div>', 
                     tv_n, tv_n_lwr, tv_n_upr)
  ) %>%
  pivot_wider(
    id_cols = c('division', 'rurality'),
    names_from = 'year',
    values_from = 'pretty'
  )

tab1 = tab1 %>% 
  left_join(
    transmute(tv_n_diff, 
           division,
           rurality,
           Change =  sprintf('<div>%4.2f</div> <div>(%4.2f, %4.2f)</div>',
                             diff, lwr, upr) 
    ),
    by = c('division', 'rurality')
)

tab1 %>%
  select(
    `Census Division` = division, 
    `Urban Type` = rurality,
    `2009`,
    `2015`,
    Change
  ) %>%
  knitr::kable(
    format = 'html', 
    escape = FALSE, 
    align = 'llccc',
    cap = cap_tab1
  ) %>%
  kableExtra::kable_styling("striped", full_width = TRUE)
Table 1. Average number of televisions per household 2009 and 2015. Numbers in parantheses represent 95% confidence intervals.
Census Division Urban Type 2009 2015 Change
New England Rural
2.61
(2.42, 2.79)
2.32
(2.02, 2.62)
-0.28
(-0.63, 0.07)
New England Urban
2.42
(2.30, 2.54)
2.24
(1.82, 2.65)
-0.19
(-0.62, 0.24)
Middle Atlantic Rural
2.69
(2.27, 3.12)
2.60
(2.34, 2.85)
-0.10
(-0.59, 0.40)
Middle Atlantic Urban
2.53
(2.44, 2.61)
2.31
(2.16, 2.45)
-0.22
(-0.39, -0.05)
East North Central Rural
2.71
(2.52, 2.90)
2.46
(2.26, 2.66)
-0.26
(-0.53, 0.02)
East North Central Urban
2.67
(2.55, 2.78)
2.27
(2.19, 2.36)
-0.39
(-0.54, -0.25)
West North Central Rural
2.62
(2.51, 2.73)
2.28
(1.98, 2.59)
-0.34
(-0.66, -0.01)
West North Central Urban
2.58
(2.45, 2.72)
2.44
(2.31, 2.57)
-0.14
(-0.33, 0.04)
South Atlantic Rural
2.78
(2.61, 2.94)
2.53
(2.29, 2.78)
-0.24
(-0.54, 0.05)
South Atlantic Urban
2.61
(2.54, 2.68)
2.36
(2.22, 2.51)
-0.25
(-0.41, -0.09)
East South Central Rural
2.43
(2.32, 2.54)
2.33
(2.11, 2.54)
-0.11
(-0.35, 0.14)
East South Central Urban
2.65
(2.50, 2.81)
2.40
(2.14, 2.66)
-0.25
(-0.55, 0.05)
West South Central Rural
2.68
(2.45, 2.90)
2.52
(2.16, 2.88)
-0.16
(-0.58, 0.26)
West South Central Urban
2.45
(2.35, 2.55)
2.45
(2.30, 2.59)
-0.01
(-0.18, 0.17)
Mountain North Rural
2.47
(1.95, 2.98)
1.83
(1.55, 2.11)
-0.64
(-1.23, -0.05)
Mountain North Urban
2.41
(2.26, 2.55)
2.42
(2.11, 2.73)
0.02
(-0.33, 0.36)
Mountain South Rural
2.29
(1.83, 2.75)
2.52
(2.10, 2.95)
0.23
(-0.39, 0.86)
Mountain South Urban
2.55
(2.44, 2.65)
2.23
(2.06, 2.40)
-0.32
(-0.52, -0.12)
Pacific Rural
2.39
(2.18, 2.61)
2.20
(1.99, 2.42)
-0.19
(-0.49, 0.11)
Pacific Urban
2.34
(2.27, 2.40)
2.13
(2.05, 2.21)
-0.21
(-0.31, -0.11)

Type of Primary Television

Figures
cap2a = paste(
  "**Figure 2a.** *Primary television type.* This figure shows the percent of",
  "homes with each television type for their most used television. Note the",
  "increase in the percent of homes with LED TV's and the corresponding",
  "decrease in standard tube televisions."
)
## order divisions
div_order = {
  tv_type %>%
   filter(tv_type == 'Standard Tube' & year == 2009) %>%
   group_by(division) %>%
   summarize( p_tube = mean(p), .groups = 'drop' ) %>%
   arrange(desc(p_tube)) 
}[['division']]

## order tv_type
type_order = {
  tv_type %>%
   filter(year == 2009) %>%
   group_by(tv_type) %>%
   summarize( p = mean(p), .groups = 'drop' ) %>%
   arrange(desc(p)) 
}[['tv_type']]

## construct a plot
tv_type %>%
  mutate(
    division = factor(division, div_order), 
    `Urban Type` = rurality,
    tv_type = factor(tv_type, type_order)
  ) %>%
  ggplot( aes(x = division, y = p, shape = year, color = `Urban Type`) ) +
  geom_point( position = position_dodge(.5) ) +
  geom_point( position = position_dodge(.5) ) +
  geom_errorbar( 
    aes(ymin = p_lwr, ymax = p_upr),
    position = position_dodge(.5), width = 0.2
  ) + 
  facet_wrap(~ tv_type) + 
  coord_flip() +
  theme_bw() +
  scale_color_manual( values = c('darkorange', 'black') ) + 
  ylab('% of primary televisions') + 
  xlab('') +
  ylim(c(0, 75))
**Figure 2a.** *Primary television type.* This figure shows the percent of homes with each television type for their most used television. Note the increase in the percent of homes with LED TV's and the corresponding decrease in standard tube televisions.

Figure 2a. Primary television type. This figure shows the percent of homes with each television type for their most used television. Note the increase in the percent of homes with LED TV's and the corresponding decrease in standard tube televisions.

cap2b = paste(
  "**Figure 2b.** *Changes in primary television type, 2015 less 2009.*"
)

tv_type_diff %>%
  mutate(
    division = factor(division, div_order), 
    `Urban Type` = rurality,
    tv_type = factor(tv_type, type_order)
  ) %>%
  ggplot( aes(x = division, y = d, color = `Urban Type`) ) +
  geom_hline( yintercept = 0, lty = 'dashed', color = 'darkgrey' )  + 
  geom_point( position = position_dodge(.5) ) +
  geom_point( position = position_dodge(.5) ) +
  geom_errorbar( 
    aes(ymin = d_lwr, ymax = d_upr),
    position = position_dodge(.5), width = 0.2
  ) + 
  facet_wrap(~ tv_type) + 
  coord_flip() +
  theme_bw() +
  scale_color_manual( values = c('darkorange', 'black') ) + 
  ylab('change in % of primary televisions, 2015 less 2009') + 
  xlab('') 
**Figure 2b.** *Changes in primary television type, 2015 less 2009.*

Figure 2b. Changes in primary television type, 2015 less 2009.

Table
cap_tab2 = paste(
 "**Table 2.** *Primary TV types in US households (%) in 2009 and 2015.*",
 "Numbers in parantheses are 95% confidence intervals."
)

tv_type = tv_type %>%
  mutate(
    pretty = sprintf('%4.1f<br>(%4.1f, %4.1f)', 
                     p, p_lwr, p_upr),
    tv_type = factor(tv_type, rev(type_order))
  )

## 2009/2015 by rurality
tab2_urb = tv_type %>%
  filter(rurality == 'Urban') %>%
  pivot_wider(
    id_cols = c('division', 'tv_type'),
    names_from = 'year',
    names_prefix = 'urban_',
    values_from = 'pretty',
    values_fill = '--'
  )
tab2_rul = tv_type %>%
  filter(rurality == 'Rural') %>%
  pivot_wider(
    id_cols = c('division', 'tv_type'),
    names_from = 'year',
    names_prefix =  'rural_',
    values_from = 'pretty',
    values_fill = '--'
  )
tab2 = left_join(tab2_urb, tab2_rul, by = c('division', 'tv_type'))

## changes
tab2_diff = tv_type_diff %>%
    transmute(
      division,
      rurality,
      tv_type = factor(tv_type, rev(type_order)),
      Change =  sprintf('%4.1f<br>(%4.1f, %4.1f)',
                        d, d_lwr, d_upr) 
    ) %>%
  pivot_wider(
    id_cols = c('division', 'tv_type'),
    names_from = 'rurality', 
    values_from = 'Change',
    values_fill = '--'
  )
tab2 = left_join(tab2, tab2_diff, by = c('division', 'tv_type') )

cn = c('Census Division', 'TV Type', 
       '2009', '2015', 'Change',
       '2009', '2015', 'Change'
       )
tab2 %>%
  select(
    division, 
    tv_type, 
    urban_2009, 
    urban_2015, 
    Urban,
    rural_2009,
    rural_2015,
    Rural
  ) %>%
  arrange(division, desc(tv_type)) %>%
  knitr::kable(
    format = 'html', 
    escape = FALSE, 
    align = 'llcccccc',
    col.names = cn,
    cap = cap_tab2
  ) %>%
  kableExtra::kable_styling("striped", full_width = TRUE) %>%
  kableExtra::add_header_above(header = c(' ' = 2, 'Urban' = 3, 'Rural' = 3))
Table 2. Primary TV types in US households (%) in 2009 and 2015. Numbers in parantheses are 95% confidence intervals.
Urban
Rural
Census Division TV Type 2009 2015 Change 2009 2015 Change
New England Standard Tube 46.8
(43.9, 49.7)
8.1
( 3.5, 12.7)
-38.7
(-44.1, -33.2)
46.7
(42.5, 50.9)
9.7
( 2.7, 16.7)
-37.0
(-45.2, -28.9)
New England LCD 40.2
(37.0, 43.4)
42.0
(37.7, 46.3)
1.8
(-3.6, 7.2)
38.5
(28.7, 48.3)
42.1
(32.4, 51.8)
3.6
(-10.2, 17.5)
New England Plasma 6.8
( 5.0, 8.6)
13.1
(10.3, 16.0)
6.3
( 2.9, 9.7)
9.2
( 4.7, 13.6)
9.7
( 4.8, 14.6)
0.5
(-6.1, 7.1)
New England Projection 2.7
( 1.8, 3.5)
0.9
( 0.0, 2.3)
-1.8
(-3.4, -0.1)
3.5
( 0.5, 6.4)
1.2
( 0.0, 3.2)
-2.2
(-5.8, 1.3)
New England Not Applicable 2.8
( 1.8, 3.8)
5.3
( 1.0, 9.6)
2.5
(-1.9, 6.9)
1.7
( 0.0, 4.3)
3.0
( 0.6, 5.4)
1.3
(-2.3, 4.8)
New England LED 0.7
( 0.3, 1.2)
30.5
(22.0, 39.0)
29.8
(21.3, 38.3)
0.4
( 0.0, 1.1)
34.2
(15.4, 53.0)
33.8
(15.1, 52.6)
Middle Atlantic Standard Tube 43.3
(41.0, 45.5)
9.6
( 6.5, 12.6)
-33.7
(-37.5, -29.9)
40.6
(33.9, 47.3)
11.4
( 5.2, 17.6)
-29.2
(-38.3, -20.1)
Middle Atlantic LCD 43.6
(40.2, 47.0)
38.2
(34.8, 41.6)
-5.4
(-10.2, -0.6)
42.8
(38.0, 47.6)
36.7
(27.5, 45.9)
-6.1
(-16.5, 4.3)
Middle Atlantic Plasma 7.8
( 6.0, 9.7)
13.3
(10.9, 15.7)
5.5
( 2.4, 8.5)
13.4
( 6.3, 20.6)
11.5
( 6.3, 16.8)
-1.9
(-10.7, 7.0)
Middle Atlantic Projection 2.9
( 1.8, 4.1)
3.4
( 1.0, 5.8)
0.5
(-2.2, 3.1)
2.5
( 0.2, 4.8)
2.4
( 0.0, 7.6)
-0.1
(-5.8, 5.6)
Middle Atlantic Not Applicable 1.8
( 0.5, 3.1)
3.5
( 1.2, 5.8)
1.7
(-1.0, 4.3)
-- 1.6
( 0.0, 4.5)
--
Middle Atlantic LED 0.5
( 0.1, 1.0)
32.0
(27.7, 36.3)
31.5
(27.1, 35.8)
0.7
( 0.0, 1.8)
36.4
(22.7, 50.0)
35.7
(22.0, 49.3)
East North Central Standard Tube 45.0
(41.3, 48.8)
9.2
( 6.5, 11.9)
-35.8
(-40.5, -31.2)
53.1
(45.5, 60.7)
5.0
( 2.4, 7.5)
-48.1
(-56.1, -40.1)
East North Central LCD 39.6
(36.6, 42.7)
35.0
(31.7, 38.3)
-4.6
(-9.2, -0.1)
37.3
(29.6, 45.0)
39.8
(35.1, 44.6)
2.5
(-6.5, 11.6)
East North Central Plasma 8.7
( 6.8, 10.6)
13.6
(11.0, 16.2)
4.9
( 1.6, 8.1)
4.8
( 2.3, 7.2)
13.4
( 7.8, 19.0)
8.6
( 2.5, 14.8)
East North Central Projection 3.6
( 2.4, 4.9)
1.9
( 0.9, 2.8)
-1.8
(-3.4, -0.2)
4.1
( 0.8, 7.3)
1.3
( 0.5, 2.1)
-2.8
(-6.1, 0.6)
East North Central Not Applicable 1.4
( 0.4, 2.3)
2.4
( 0.9, 3.8)
1.0
(-0.7, 2.8)
0.4
( 0.0, 1.2)
0.5
( 0.0, 1.4)
0.1
(-1.2, 1.3)
East North Central LED 1.6
( 0.6, 2.6)
38.0
(33.8, 42.3)
36.4
(32.1, 40.8)
0.4
( 0.0, 1.2)
40.0
(35.1, 44.9)
39.6
(34.7, 44.6)
West North Central Standard Tube 44.9
(42.0, 47.7)
9.6
( 6.0, 13.2)
-35.3
(-39.9, -30.7)
47.0
(44.2, 49.8)
11.0
( 5.8, 16.1)
-36.0
(-41.9, -30.1)
West North Central LCD 42.7
(39.9, 45.5)
41.0
(36.8, 45.2)
-1.7
(-6.8, 3.4)
39.9
(36.9, 42.9)
46.6
(40.7, 52.5)
6.7
( 0.1, 13.3)
West North Central Plasma 6.6
( 5.2, 8.0)
11.0
( 7.6, 14.5)
4.4
( 0.8, 8.1)
8.1
( 6.2, 10.0)
12.2
( 5.7, 18.7)
4.1
(-2.7, 10.9)
West North Central Projection 3.8
( 2.7, 4.9)
2.2
( 0.5, 3.9)
-1.6
(-3.6, 0.5)
2.4
( 0.5, 4.4)
-- --
West North Central Not Applicable 0.6
( 0.2, 1.0)
3.1
( 0.0, 6.3)
2.5
(-0.7, 5.7)
1.2
( 0.3, 2.1)
1.3
( 0.0, 3.4)
0.1
(-2.1, 2.4)
West North Central LED 1.4
( 1.0, 1.9)
33.0
(29.1, 36.9)
31.6
(27.6, 35.5)
1.4
( 0.4, 2.3)
28.9
(23.4, 34.4)
27.5
(22.0, 33.1)
South Atlantic Standard Tube 44.1
(41.1, 47.1)
8.0
( 5.9, 10.1)
-36.1
(-39.8, -32.4)
42.6
(37.9, 47.4)
10.8
( 5.3, 16.3)
-31.8
(-39.1, -24.5)
South Atlantic LCD 40.5
(37.1, 43.8)
37.9
(34.4, 41.4)
-2.6
(-7.4, 2.2)
41.1
(37.7, 44.5)
35.7
(28.3, 43.2)
-5.4
(-13.6, 2.8)
South Atlantic Plasma 9.4
( 7.4, 11.5)
16.1
(13.9, 18.2)
6.6
( 3.7, 9.6)
8.1
( 5.7, 10.4)
14.8
( 8.6, 21.0)
6.7
( 0.1, 13.4)
South Atlantic Projection 3.9
( 2.7, 5.0)
1.1
( 0.7, 1.6)
-2.7
(-4.0, -1.5)
5.7
( 3.7, 7.7)
1.0
( 0.1, 2.0)
-4.7
(-7.0, -2.5)
South Atlantic Not Applicable 1.0
( 0.5, 1.6)
3.0
( 1.7, 4.4)
2.0
( 0.6, 3.4)
1.2
( 0.0, 2.8)
3.1
( 0.0, 7.2)
1.9
(-2.6, 6.4)
South Atlantic LED 1.1
( 0.5, 1.7)
33.9
(30.2, 37.5)
32.8
(29.1, 36.4)
1.3
( 0.0, 2.8)
34.5
(26.4, 42.6)
33.3
(25.0, 41.5)
East South Central Standard Tube 47.2
(40.4, 53.9)
16.7
(12.1, 21.2)
-30.5
(-38.6, -22.4)
45.3
(38.1, 52.5)
11.5
( 2.3, 20.6)
-33.8
(-45.5, -22.2)
East South Central LCD 40.5
(33.2, 47.7)
38.0
(34.2, 41.8)
-2.5
(-10.7, 5.7)
42.8
(37.5, 48.1)
35.7
(25.7, 45.7)
-7.1
(-18.4, 4.2)
East South Central Plasma 6.8
( 4.0, 9.7)
9.0
( 4.2, 13.8)
2.2
(-3.5, 7.8)
5.4
( 3.4, 7.4)
15.7
( 8.9, 22.5)
10.3
( 3.3, 17.4)
East South Central Projection 2.9
( 1.8, 3.9)
2.5
( 1.5, 3.6)
-0.3
(-1.8, 1.1)
5.6
( 2.2, 8.9)
1.8
( 0.0, 4.4)
-3.8
(-8.0, 0.5)
East South Central Not Applicable 0.8
( 0.0, 2.1)
3.4
( 0.0, 6.9)
2.6
(-1.1, 6.3)
0.6
( 0.0, 1.5)
2.8
( 0.7, 4.9)
2.2
(-0.1, 4.5)
East South Central LED 1.8
( 0.8, 2.9)
30.4
(26.8, 34.0)
28.6
(24.8, 32.4)
0.3
( 0.0, 1.1)
32.5
(20.8, 44.3)
32.2
(20.4, 44.0)
West South Central Standard Tube 44.6
(40.8, 48.3)
6.8
( 3.6, 10.0)
-37.8
(-42.7, -32.9)
47.8
(39.7, 55.9)
9.4
( 4.1, 14.7)
-38.4
(-48.1, -28.7)
West South Central LCD 37.3
(34.1, 40.4)
38.9
(35.3, 42.5)
1.6
(-3.2, 6.4)
35.6
(30.0, 41.2)
29.5
(22.4, 36.6)
-6.1
(-15.1, 2.9)
West South Central Plasma 10.4
( 8.1, 12.7)
16.1
(14.2, 18.0)
5.6
( 2.7, 8.6)
8.0
( 5.2, 10.8)
15.7
(11.5, 19.8)
7.7
( 2.7, 12.7)
West South Central Projection 5.2
( 4.0, 6.4)
1.4
( 0.5, 2.3)
-3.8
(-5.4, -2.3)
7.0
( 1.9, 12.1)
0.7
( 0.0, 2.1)
-6.3
(-11.6, -0.9)
West South Central Not Applicable 1.5
( 0.6, 2.5)
1.1
( 0.2, 2.0)
-0.5
(-1.8, 0.8)
1.2
( 0.0, 2.6)
1.2
( 0.0, 3.7)
0.1
(-2.8, 3.0)
West South Central LED 1.0
( 0.4, 1.5)
35.8
(30.8, 40.7)
34.8
(29.8, 39.8)
0.5
( 0.0, 1.5)
43.5
(35.8, 51.1)
43.0
(35.3, 50.7)
Mountain North Standard Tube 40.7
(35.8, 45.7)
7.9
( 4.9, 10.8)
-32.8
(-38.6, -27.1)
40.0
(19.4, 60.5)
10.3
( 2.7, 17.8)
-29.7
(-51.6, -7.8)
Mountain North LCD 40.6
(36.4, 44.8)
41.5
(35.9, 47.1)
0.9
(-6.1, 7.9)
47.6
(21.5, 73.7)
30.1
(16.9, 43.3)
-17.5
(-46.7, 11.8)
Mountain North Plasma 6.9
( 4.8, 9.0)
13.2
( 9.4, 17.1)
6.3
( 1.9, 10.7)
6.8
( 0.0, 16.9)
12.5
( 2.5, 22.5)
5.7
(-8.5, 19.9)
Mountain North Projection 9.5
( 7.1, 11.9)
0.4
( 0.0, 2.4)
-9.1
(-12.2, -6.0)
5.1
( 0.0, 11.3)
4.1
( 0.0, 14.9)
-1.0
(-13.4, 11.4)
Mountain North Not Applicable 1.7
( 0.0, 3.9)
2.7
( 0.7, 4.6)
1.0
(-2.0, 3.9)
0.5
( 0.0, 1.4)
8.6
( 1.0, 16.2)
8.1
( 0.5, 15.8)
Mountain North LED 0.6
( 0.0, 1.5)
34.4
(28.1, 40.7)
33.8
(27.4, 40.2)
-- 34.3
(27.7, 41.0)
--
Mountain South Standard Tube 42.8
(37.2, 48.4)
10.9
( 4.6, 17.1)
-32.0
(-40.3, -23.6)
38.2
(29.1, 47.3)
12.9
( 7.5, 18.3)
-25.3
(-35.9, -14.7)
Mountain South LCD 41.2
(35.7, 46.7)
38.6
(33.4, 43.9)
-2.6
(-10.2, 5.1)
44.1
(27.5, 60.6)
55.4
(39.9, 70.8)
11.3
(-11.4, 33.9)
Mountain South Plasma 9.0
( 6.2, 11.8)
12.6
( 6.5, 18.8)
3.6
(-3.1, 10.4)
11.1
( 5.5, 16.8)
8.3
( 0.0, 25.5)
-2.8
(-21.0, 15.3)
Mountain South Projection 5.8
( 3.4, 8.2)
3.1
( 0.0, 7.9)
-2.6
(-8.0, 2.7)
6.6
( 2.5, 10.7)
-- --
Mountain South Not Applicable 0.9
( 0.0, 2.3)
2.0
( 0.0, 4.2)
1.0
(-1.6, 3.6)
NA NA --
Mountain South LED 0.3
( 0.0, 0.9)
32.8
(24.1, 41.5)
32.5
(23.8, 41.2)
-- 23.5
(19.3, 27.6)
--
Pacific Standard Tube 42.1
(40.0, 44.2)
7.6
( 6.0, 9.2)
-34.5
(-37.1, -31.8)
37.7
(30.6, 44.8)
11.4
( 7.7, 15.1)
-26.3
(-34.2, -18.3)
Pacific LCD 39.6
(37.0, 42.2)
40.1
(36.7, 43.5)
0.5
(-3.8, 4.8)
41.5
(33.8, 49.1)
40.9
(33.6, 48.2)
-0.5
(-11.1, 10.0)
Pacific Plasma 10.1
( 8.6, 11.6)
16.9
(12.2, 21.6)
6.8
( 1.9, 11.7)
10.8
( 7.1, 14.5)
12.6
( 7.4, 17.9)
1.8
(-4.5, 8.2)
Pacific Projection 5.0
( 3.9, 6.2)
2.0
( 1.1, 2.8)
-3.1
(-4.5, -1.6)
8.0
( 2.9, 13.0)
2.9
( 1.0, 4.9)
-5.0
(-10.4, 0.4)
Pacific Not Applicable 2.0
( 1.4, 2.5)
3.2
( 2.1, 4.4)
1.3
(-0.0, 2.6)
1.0
( 0.0, 2.4)
3.2
( 0.2, 6.2)
2.2
(-1.1, 5.5)
Pacific LED 1.3
( 0.6, 1.9)
30.2
(26.3, 34.1)
28.9
(25.0, 32.8)
1.1
( 0.0, 2.8)
28.9
(22.4, 35.4)
27.8
(21.1, 34.4)