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Workshop Goals

1. To review the theory and practice of regression

2. To get experience performing regression analyses in R
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Outline

� Simple Regression

� Diagnostics

� Categorical Predictors

� ANCOVA (Interactions)

� Multiple Regression

� Model Selection
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What is Regression?

A technique for learning about the relationship between
independent variables, X , and a dependent variable Y .

X1,X2, ...,Xp → Y (1)

Terminology

� X : independent variable, covariate, predictor

� Y : dependent variable, response, outcome
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Questions Answered by Regression

What factors influence student achievement?

How effective are various treatments for depression?

Does income depend on gender?
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Simple Linear Regression

Simple linear regression explores the relationship between a single
predictor, X , and a response variable Y .

Example

The relationship between height and wingspan
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Height and Wingspan Data

height wingspan

70.2 69.9
66.1 69.6
68.9 70.6
65.8 70.4
63.2 68.3
69.7 71.9
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The Simple Linear Regression Model
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Review: Statistics and Parameters

Statistics

� A statistic is a summary measure of a sample

� Examples

1. Sample Mean (X̄ )
2. Sample Standard Deviation (s)

Parameters

� A parameter is a characteristic of a population

� Examples

1. Population Mean (µ)
2. Population Standard Deviation (σ)
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Review of Lines

Common notation:

y = mx + b (2)

� m is the slope

� b is the y-intercept
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y = .5x + 2
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Simple Linear Regression Model

� Assumes a linear relationship between X and the expected
value of Y

E [Y ] = β0 + β1X (3)

� E stands for “expected”

� β0 is the intercept

� β1 is the slope, or “effect” of X
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E [Y ] and Y versus X
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Two Equations

Expected

E [Y ] = β0 + β1X (4)

Individual

Y = β0 + β1X + ε (5)

� ε is the error

� ε is normally distributed with mean 0 and variance σ2

� σ2 is the error variance
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Normal Distribution
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Normal Distribution

Two Components

� µ denotes the center of the distribution

� σ denotes the standard deviation of the distribution

� σ2 denotes the variance of the distribution
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Same Mean, Different σ2
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Population and Sample Lines
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Regression Parameters and Statistics

Parameter Statistic Alternate Notation

β0 β̂0 b0
β1 β̂1 b1
σ2 σ̂2 s2

� β̂0 – estimated intercept

� β̂1 – estimated slope

� σ̂2 – estimated error variance

� n – sample size
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Which Line Is Best?
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Residuals
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Residuals and Least Squares

Residuals

� Definition: the vertical distance between a point and the line

� Each point has a residual

� The residual of the i th person is denoted ei

Method of Least Squares

� The Least Squares regression line is the line that minimizes
the sum of the squared residuals (RSS)

Σe2i (6)
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Least Squares Equations

Slope

β̂1 =
Σ(Xi − X̄ )(Yi − Ȳ )

Σ(Xi − X̄ )2
(7)

Intercept

β̂0 = Ȳ − β̂1X̄ (8)

Residual Variance

σ̂2 =
Σe2i
n − 2

(9)
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Population and Sample Lines

Means

� Population
E [Y ] = β0 + β1X (10)

� Sample
Ŷ = β̂0 + β̂1X (11)

Individual

� Population
Y = β0 + β1X + ε (12)

� Sample
Y = β̂0 + β̂1X + e (13)
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Properties of Least Squares Regression Line

� Residuals sum to zero: Σei = 0

� Line passes through the middle (X̄ , Ȳ ) of the data

� Estimates β̂0 and β̂1 are unbiased if model is correct
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Least Squares Fit
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Prediction

Goal of prediction is to predict the Y value for a new observation
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Fitted Line: Ŷ = 0.7 + 1.3X

� For every unit increase in X , Ŷ increases by 1.3
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Prediction

Least Squares Line

Ŷ = 0.7 + 1.3X (14)

Prediction at X = 4

Ŷ = 0.7 + 1.3(4) = 5.9 (15)

Prediction at X = 5

Ŷ = 0.7 + 1.3(5) = 7.2 (16)

7.2− 5.9 = 1.3 (17)
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Avoid Extrapolation
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Strength of Relationship
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Correlation

� The correlation coefficient, r , measures the strength of the
linear relationship between Y and X

� r is between -1 and 1

� r = -1 indicates an exact negative linear relationship

� r = 1 indicates an exact positive linear relationship

� r = 0 indicates no linear relationship

� The regression line slope β̂1 is related to r through the
equation β̂1 = r ∗ sdP(Y )/sdP(X ).
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Correlation: r = 0.8, r = 0.4
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Correlation: r = -0.8, r = -0.4
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Correlation: r ≈ 0
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Common Question

How much of the variation in Y is explained by X?
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R2

� The squared correlation coefficient (r2 or R2) is the
proportion of variation in Y accounted for by the linear
relationship with X

R2 = 1−
∑

e2i /
∑

(Yi − Ȳ )2 = 1−SSError/SSTotal (18)

� R2 is between 0 and 1

� R2 is a commonly reported measure of model fit

� SSError = (1− R2)SSTotal

Terminology

� R2: Coefficient of Determination
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Proportion of Variation Explained = 0.64
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Proportion of Variation Explained

� R2 = .64 indicates 64% of the variation in Y is accounted for
by the line
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Summary of Simple Linear Regression

� A simple linear regression assumes that Y = β0 + β1X + ε

� The Least Squares method estimates β̂0, β̂1, and σ̂2

� The least squares equation, Ŷ = β̂0 + β̂1X , can be used for
prediction

� The correlation measures the strength of the linear
relationship
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Inference

� We have discussed how to estimate regression coefficients.

� How precise are these estimates?

� Statistical Inference is the process of drawing conclusions
from data

Two Types of Inference

1. Confidence Intervals

2. Hypothesis Tests
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Standard Error

� All estimates have variability associated with them

� The standard error of an estimate gives an idea of how much
the statistic would vary from sample to sample

Standard Error of β̂1

se(β̂1) =
σ̂√

Σ(Xi − X̄ )2
=

σ̂√
(n − 1)Var(X )

(19)
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Confidence Intervals Overview

� Confidence intervals give a range of reasonable values for a
parameter

� Example: Instead of saying only that β̂1 = 4, we could say
that a 95% confidence interval for β1 is (3.2, 4.8)
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Confidence Interval for β1

� Take best guess, and go up and down “a few” std. errors

β̂1 ± t?se(β̂1) (20)

t? depends on

1. Confidence Level (90%, 95%, etc)

2. Sample Size
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Confidence Intervals and Hypothesis Tests

� Confidence intervals give range of reasonable values for β1

� Hypothesis tests help us decide if a particular value (usually 0)
is reasonable

� Hypothesis tests use test statistics to make a decision

� A test statistic is a summary of the data that helps us make
a decision
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Hypothesis Tests

� How do we know if X has any effect on Y ?

Y = β0 + β1X + ε (21)

� If β1 = 0, then X has no effect on Y

� A common hypothesis test is H0 : β1 = 0 versus Ha : β1 6= 0.

47 / 190



Intuition of Hypothesis Test
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t-test for Regression Coefficient

Hypotheses

� H0 : β1 = 0

� Ha : β1 6= 0

Find Test Statistic

t =
β̂1

se(β̂1)
(22)

P-value

� The P-value is the probability of getting such an extreme
result if H0 is true.
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Distributions

Definition

� A distribution describes the possible values of a random
quantity.

Regression Distributions

� Normal(µ, σ)

� t(df )

� F(df1, df2)
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Standard Normal and t Distributions
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F(df1 = 3, df2 = 100)
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Distribution of t Statistic

Hypotheses

� H0 : β1 = 0

� Ha : β1 6= 0

Distribution of Test Statistic

t =
β̂1

se(β̂1)
∼ t(df = n − 2) (23)
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P-value
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Results

Est Std Err 95% CI t stat P-val

Intercept 0.54 0.43 (-0.33, 1.40) 1.25 0.22
Predictor 0.21 0.14 (-0.06, 0.49) 1.55 0.13

R2 = 0.19, σ̂ = 0.35

� Always report confidence intervals in addition to P-values!
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Overall Test

Question

� Does the model explain more variation in Y than would be
expected by chance?
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Intuition of Overall Test
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Decomposition of Variance

Total Variation

SSTotal =
∑

(Yi − Ȳ )2

Variation Explained by Model

SSReg =
∑

(Ŷi − Ȳ )2

Variation Due to Error

SSError =
∑

(Yi − Ŷi )
2

Decomposition

SSTotal = SSReg + SSError
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F Test

Hypotheses

� H0: Model explains no variation in Y

� Ha: Model explains some variation in Y

Test Statistic

F = SSReg/1
SSError/(n−2)
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Analysis of Variance (ANOVA) table

Df Sum Sq Mean Sq F value P-val

Regression 1 32.27 32.27 5.34 0.0264
Error 38 229.60 6.04

Conclusion

� Since p ≤ 0.05, conclude that the model explains some
variation in Y .
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F Distribution

� In Simple Linear Regression F ∼ F (1, n − 2)
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Simple Regression Results

Table: Coefficients

Est Std Err 95% CI t stat P-val

Intercept 2.85 0.39 (2.05, 3.64) 7.26 0.000
Predictor 1.27 0.55 (0.16, 2.39) 2.31 0.026

Table: ANOVA Table

Df Sum Sq Mean Sq F value P-val

Regression 1 32.27 32.27 5.34 0.0264
Error 38 229.60 6.04
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Confidence Bands For Regression Line

Two Lines

Ŷ = β̂0 + β̂1X (24)

E [Y ] = β0 + β1X (25)

Question

� How close is the fitted line to the true line?
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Confidence Bands for Regression Line
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Confidence Bands for Regression Line

Narrow Intervals

1. X close to X̄

2. Large n

3. Small σ̂

Formula

Best Guess ± (A few)*std. errors

ŷ ± t?σ̂

√
1

n
+

(x − x̄)2

Σ(xi − x̄)2
(26)
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Prediction Intervals
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Prediction Intervals

Narrow Prediction Intervals

1. X close to X̄

2. Large n

3. Small σ̂

4. Prediction intervals are wider than confidence bands for
population line.

Formula

Best Guess ± (A few)*std. errors

ŷ ± t?σ̂

√
1 +

1

n
+

(x − x̄)2

Σ(xi − x̄)2
(27)
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Summary of Regression Inferences

� Estimated regression coefficients have a sampling error.

� Confidence intervals and hypothesis tests are tools for making
inferences in the presence of sampling error.

� Confidence bands quantify uncertainty in the estimated
regression line.

� Prediction intervals quantify uncertainty in the estimated
value of y for a given value of x .
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Computer Lab #1

Simple Regression
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Diagnostics

Are the results meaningful and appropriate?

Look at the following 3 graphs: Are they the same?

70 / 190



β̂1 = 1, r 2 = 0.8
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β̂1 = 1, r 2 = 0.8
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β̂1 = 1, r 2 = 0.8
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Regression Assumptions

� Sample is representative of population

� The relationship between X and E [Y ] is linear

� The errors are independent

� The errors have constant variance

� The errors are normally distributed
� Not important with large sample sizes!
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Checking Linearity Assumption

� Scatter plot of Y versus X

� Residual plots: residuals (e) versus predicted values (Ŷ )

� Residuals should be randomly scattered around 0
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Checking Form: Scatter Plot of Y versus X
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Checking Form: Residual Plots
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Remedial Measures

What if the diagnostic plots show linearity is violated?

One solution: model the relationship quadratically

Y = β0 + β1X + β2X
2 + ε (28)
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A quadratic fit
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Checking Constant Variance

Is the assumption of constant variance met?
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Scatterplot #1 – Constant Variance?
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Residual plot #1 – Constant Variance?
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Scatterplot #2 – Constant Variance?
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Residual plot #2 – Constant Variance?
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Heteroscedasticity

� Homoscedasticity is when errors have same variance.

� Heteroscedasticity is when errors have different variance.

� A common example of heteroscedasticity is when there is a
mean-variance relationship.

� Heteroscedasticity threatens the accuracy of inferences.
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Transformations

Replaces variable with some function of that variable

Examples

1. Y →
√
Y

2. X → log(X )

A tranformation may help with:

1. Heteroscedasticity

2. Lack of fit to a straight line
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Transformation Example

Y X1

1 14.9 3.8
2 34.2 4.5
3 4.0 3.4
4 94.9 3.1
5 28.0 2.6
6 2.7 2.8
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Original Model

Ŷ = 24.5 + 7.72X1 (29)
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Residuals versus Predicted
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Transformed Model

� Use log(Y ) as outcome, and regress against X1.

log(Ŷ ) = 2.65 + 0.33X1 (30)
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Residuals versus Predicted
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Back Transforming

log(Ŷ ) = 2.65 + 0.33X1 (31)

Ŷ = e2.65e .33X1 (32)

Interpretation

� For every unit increase in X1, Ŷ increases by factor of
e .33 = 1.39 or (39%).
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Which Transformation?

√
Y or log(Y ) or Y 3 or Y 2 or Y−1

Considerations

1. Quality of Fit

2. Interpretability
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Outliers
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Outliers
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Outliers
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Outlier Effects

� Model 1: Without Outlier

� Model 2: With Outlier

M1 M2

β̂0 0.91 0.00

β̂1 0.32 0.67
r2 0.64 0.50
σ̂ 0.26 0.83
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Leverage and Influence

� Leverage measures how far each point is from X̄ .

� Influence measures how each point changes the fitted line.

� High Influence =⇒ High Leverage

� High Leverage =⇒ High Influence ?
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Leverage and Influence

High Leverage High Influence
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Cook’s Distance

� Each point i = 1, ..., n has a Cook’s Distance.

� Measures impact of deleting each point

� “Large” values of Cook’s Distance warrant investigation.

� Rules of thumb for “large”

1. Di > 1
2. Di > 4/n
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DFFITS and DFBETA

� DFFITS: effect of deleting each observation on fitted values

1. Rule of thumb for ”large”: |DFFITS | > 2
√
p/n, where p is the

number of parameters in the model.

� DFBETA: effect of deleting each observation on coefficient
estimates

1. Rules of thumb for ”large”: |DFBETA| > 1 or
|DFBETA| > 2/

√
n.

� Cook’s, DFFITS, and DFBETA are Leave-One-Out
diagnostics.
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Example of Influence Diagnostics
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Example of Influence Diagnostics

Obs Lev DFBETA DFFITS Cook

1 0.32 0.01 0.01 0.00
2 0.24 0.08 0.08 0.00
3 0.17 -0.04 -0.04 0.00
4 0.13 -0.16 -0.20 0.02
5 0.10 -0.01 -0.02 0.00

? 6 0.09 0.30 0.84 0.21
7 0.10 -0.01 -0.14 0.01
8 0.13 0.06 -0.30 0.05
9 0.17 0.13 -0.35 0.06

? 10 0.24 0.38 -0.74 0.25
? 11 0.32 -0.93 1.54 0.82
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What to do with influential points?

1. Investigate!

2. Consider robust methods.

3. Do not remove without consideration.
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Error Distribution

� Regression assumes errors are normally distributed

� Assess with QQ plot and histogram
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QQ plot of residuals
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Histogram of residuals
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The Normality Assumption

� The assumption is not that Y is normal

� The assumption is that Y varies from its mean normally (i.e.
the errors are normal)

� Because of the Central Limit Theorem, error normality is
not crucial in large samples
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Omitted Variables and Confounding

Omitted variables can obscure the relationship between X and Y

Reading Score vs Hours of TV
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Reading Score vs Hours TV
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Reading Score vs Hours TV
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Reading Score vs Hours TV
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Confounders

Definition

� A confounder is a variable correlated with both X and Y

Potential Problems

� Reverse direction of a relationship

� Create false appearance of a relationship

� Create inaccurate estimates

Correlation ; Causation

� Regression results are associative rather than causal.
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Causal Inference

Motivation

� How does a new medical treatment affect patient outcomes?

Methods for Causal Inference

� Statistical Adjustment

� Matching

� Propensity Scores
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Categorical Predictors

Motivating Example

Suppose you are interested in understanding how average
horsepower differs between three types of cars: Japanese
American, and European.
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Dummy Variables

Common Method

� If a categorical variable has k levels, use k − 1 dummy
variables.

� Let one category (Japanese) be the reference category.

� Compare other categories to reference category.

� If country = American, then X1 = 1, else X1 = 0.

� If country = European, then X2 = 1, else X2 = 0.
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Dummy Variables

Level X1 X2

Japanese 0 0
American 1 0
European 0 1
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Model

Average Horsepower by Country

E [Y ] = β0 + β1X1 + β2X2 (33)

� X1 = 1 if car is American

� X2 = 1 if car is European

Parameter Interpretations

� β0: Average horsepower for Japanese cars

� β0 + β1: Average horsepower for American cars

� β0 + β2: Average horsepower for European cars
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Hypothesis Testing

Model

E [Y ] = β0 + β1X1 + β2X2 (34)

H0 : β1 = 0

� Do Japanese and American cars have same mean horsepower?

H0 : β2 = 0

� Do Japanese and European cars have same mean horsepower?
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ANOVA Output

Estimate Std. Error t value p-value

(Intercept) 80.51 0.85 95.11 < 0.001
car=“American” 29.25 1.20 24.44 < 0.001
car=“European” 1.84 1.20 1.54 0.130
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Overall Test

� The dummy variable approach compares each category to a
reference level

� What about an overall test for significance of country?

Hypotheses

� H0 : µJ = µA = µE

� Ha: at least one µj is different

Alternative Expression

� H0 : β1 = β2 = 0

� Ha: β1 6= 0 or β2 6= 0
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Overall F Test

Table: ANOVA Table

Df Sum Sq Mean Sq F value P-val

country 2 17445.63 8722.82 343.30 < .001
Residuals 87 2210.55 25.41

Conclusion

� There is strong evidence that horsepower depends on country.
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Summary: Categorical Predictors

� Categorical predictors can be included via dummy variables.

� An F test is an overall test.
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Analysis of Covariance (ANCOVA)

� Includes both categorical and continuous predictors

� Combination of regression and ANOVA

Example

� Consider the case of one continuous predictor, X1, and one
binary predictor, X2
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Y versus X1
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X1 continuous, X2 binary
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X1 continuous, X2 binary
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ANCOVA Model

E [Y ] = β0 + β1X1 + β2X2 (35)

� X1 is continuous.

� X2 is a 0/1 dummy variable.

� β1 is the slope of the line.

� β2 is the vertical distance between the two lines.
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What if the lines are not parallel?
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ANCOVA Interaction Model

Effect of X1 depends on X2

E [Y ] = β0 + β1X1 + β2X2 + β3X1X2 (36)

For X2 = 0,the effect of X1 is β1.

For X2 = 1, the effect of X1 is β1 + β3.

Question: What is the interpretation of β2?
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Computer Lab #2

Diagnostics, categorical variables, and ANCOVA (interactions)
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Simple and Multiple Regression

Simple Regression Model

Y = β0 + β1X + ε (37)

Multiple Regression Model

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε (38)
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Motivating Example

What factors influence student achievement?
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Goals

1. Learn about relationship between X1, ...,Xp and Y

2. Estimate βi with β̂i

3. Construct confidence intervals for βi

4. Determine strength of relationships
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Sample Data Set

Y X1 X2 X3

8.18 9.08 3.81 11.96
7.02 10.69 5.22 11.28
9.52 10.71 3.68 13.08
8.54 8.69 2.58 11.96
7.84 7.26 2.17 12.33
0.95 10.61 3.33 13.08
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Summarize Each Variable Separately

Graphical Summaries

� Histogram

� Boxplot

Numerical Summaries

� Mean

� Quartiles

� Minimum

� Maximum

� Standard Deviation
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Scatterplot Matrix
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Correlation Matrix

Y X1 X2 X3

Y 1.00 0.16 -0.64 0.86
X1 0.16 1.00 0.50 0.11
X2 -0.64 0.50 1.00 -0.75
X3 0.86 0.11 -0.75 1.00
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Method: Least Squares

Sum of Squared Residuals

Σe2i = Σ(Yi − Ŷi )
2 (39)

Predicted Values

Ŷ = β̂0 + β̂1X1 + β̂2X2 + ...+ β̂pXp (40)
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Interpretations

� β̂i is the predicted change in Y for every one unit increase in
Xi , holding all other variables constant

Ŷ = β̂0 + β̂1X1 + β̂2X2 + ...+ β̂pXp (41)
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Example Interpretation

Y X1 X2 X3

8.18 9.08 3.81 11.96
7.02 10.69 5.22 11.28
9.52 10.71 3.68 13.08
8.54 8.69 2.58 11.96
7.84 7.26 2.17 12.33
0.95 10.61 3.33 13.08

Ŷ = −7.02 + 0.51X1 − 0.62X2 + 1.04X3 (42)

� The predicted value of Y increases by 0.51 for every unit
increase in X1, holding all other variables constant.
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Prediction

� Use fitted line to predict Y for new observations.

� Individual with X1 = 10, X2 = 4, X3 = 11

Ŷ = −7.02 + 0.51X1 − 0.62X2 + 1.04X3 (43)

Ŷ = −7.02 + 0.51(10)− 0.62(4) + 1.04(11) = 6.93 (44)
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Results

1. Coefficient estimates β̂0, β̂1, ... ,β̂p

2. Standard errors of coefficients

3. Confidence intervals for population coefficients

4. Results from H0 : βi = 0 for i > 0
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Sample Output

Ŷ = −6.15 + 0.54X1 − 0.71X2 + 0.96X3 (45)

Est SE Lower CI Upper CI t value p-value

Int -6.15 1.87 -9.84 -2.47 -3.29 < 0.001
X1 0.54 0.16 0.23 0.85 3.40 0.002
X2 -0.71 0.21 -1.13 -0.29 -3.33 0.003
X3 0.96 0.20 0.58 1.35 4.94 < 0.001
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Multiple Testing

� A Type I Error is P(reject H0 if H0 is true).

� Every test has an α (often 5%) chance of a Type I error.

� For a single test, there is a 5% chance of a Type I error.

� For ten independent tests, there is a 1− (1− 0.05)10 ≈ 40%
chance of at least one Type I error.
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Overall Test

� T-tests consider each predictor separately.

� Multiple Testing Issue

� F test is an “overall” test
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F-test for Regression

� H0: model has no predictive power for Y

� β1 = β2 = ... = βp = 0

� Ha: model has some predictive power

� At least one non-intercept βi 6= 0
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F-test for Regression

� p = (# of predictors)

� n = sample size

� Test statistic has a F (p, n − p − 1) distribution

Example

� p = 3, n = 100

� F (3, 96) = 2.31, p-val = 0.081

Conclusion

� Not enough information (at α = 0.05 level) to conclude that
model has any predictive ability
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Multiple R2

� Proportion of variation in Y explained by model

� If R2 = 0.74, then 74% of the variation in Y is explained by
the model.

� R2 = cor(Ŷ ,Y )2
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Multiple Regression Diagnostics

� Form of Model

� Error Distribution

� Confounding

� Correlation among predictors
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Independent Predictors

� If predictors are independent, then multiple regression and
simple regressions yield same estimated coefficients.

Multiple Regression

Ŷ = 0.14 + 0.48X1 − 1.02X2 (46)

Simple Regressions

Ŷ = −5.65 + 0.48X1 (47)

Ŷ = 4.96− 1.02X2 (48)
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Correlated Predictors

� If predictors are correlated, then multiple regression and
simple regressions can yield very different results.

Multiple Regression cor(X1, X2) = .8

Ŷ = −0.05 + 0.52X1 + 1.03X2 (49)

Simple Regressions

Ŷ = 4.00− 0.50X1 (50)

Ŷ = 3.08 + 0.68X2 (51)
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Multicollinearity

� Multicollinearity is when two or more predictors are highly
correlated.

Consequences

� Limits ability to estimate effects of individual predictors

� Coefficient estimates have high variability.

� Can still use model to make predictions
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Detecting Multicollinearity

1. Correlation Matrix

Y X1 X2 X3

Y 1.00 0.16 -0.64 0.86
X1 0.16 1.00 0.50 0.11
X2 -0.64 0.50 1.00 -0.75
X3 0.86 0.11 -0.75 1.00
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Variance Inflation Factors

� Pairwise Correlations do not fully capture multicollinearity.

� Variance Inflation Factors (VIF) are a useful tool for
quantifying collinearity in a data set.

� Each regression coefficient has a VIF.
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Calculating VIF for Xj

1. Temporarily treat Xj as response.

2. Regress Xj against all other predictors.

3. R2
j is the multiple R2 for this regression.

4. High R2
j means Xj is affected by multicollinearity.
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Variation in β̂j

No Collinearity

Var(β̂j) =
σ̂2

(n − 1)Var(Xj)
(52)

Collinearity

Var(β̂j) =
σ̂2

(n − 1)Var(Xj)
∗ 1

1− R2
j

(53)

VIF

1

1− R2
j

(54)
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VIF Example

Predictor Estimate VIF

X1 β̂1 8.08

X2 β̂2 6.24

X3 β̂3 3.42

� Multicollinearity increases Var(β̂1) by factor of 8.08 (808%).

� The standard error of β̂1 increases by factor of
√

8.08 = 2.84.
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Large VIFs

How large is too large?

� Various cutoffs have been proposed:

1. VIF > 5
2. VIF > 10.

� The choice depends on the goals of a particular analysis.

How to fix collinearity?

� Remove variables from model

� Ridge Regression

� More under Model Selection
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Residual Diagnostics

1. Residual Plots: ei versus Ŷi

2. QQ Plot of Residuals

3. Plot residuals versus each predictor
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Residual versus individual predictor (X1)
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Added Variable Plots

� A scatter plot between Y and X shows only the marginal
relationship.

� An added variable plot shows relationships after adjusting
for other predictors.

� One use of this plot is to assess confounding.
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Added Variable Plot for X1

Steps

1. Regress Y on X2 and X3.

2. Compute residuals from #1 (res1).

3. Regress X1 on X2 and X3.

4. Compute residuals from #3 (res2).

5. Plot res1 versus res2.
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Scatter and Added Variable Plots
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Higher Order Terms

Ŷ = β̂0 + β̂1X1 + β̂2X
2
1 + β̂3X2 (55)

Effect of X1

� The effect of X1 is no longer constant.

� β̂1 should not be interpreted in isolation.

� For each unit increase in X1, the predicted value of Y
increases by β̂1 + 2β̂2X1 + β̂2.
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Interactions

� The model Y = β0 + β1X1 + β2X2 + ε assumes that the effect
of X1 does not depend on X2.

� The following 3 graphs plot X1 versus Y for:

1. all values of X2,
2. only points where X2 > 0, and
3. only points where X2 < 0.

166 / 190



Y versus X1
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Y versus X1
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Interaction Model

� Interactions are usually modeled with a multiplicative term.

Ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X1X2 (56)

Effect of X1

� The effect of X1 depends on X2

� For each unit increase in X1, the predicted value of Y
increases by β̂1 + β̂3X2.
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Diagnostics

� The sample is representative of the population.

� The relationship between X and E [Y ] is linear.

� The errors are independent.

� The errors have constant variance.

� The errors are normally distributed.
� Not important with large sample sizes!

� Correlation among predictors

� Interactions
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Model Selection

Which Model Is Best?

Y = β0 + β1X1 + β2X
2
1 + β3X2 + β4X1X2 (57)

OR

Y = β0 + β1X1 + β2X3 (58)

Two Considerations

1. Which predictors to include

2. Form (X1 or X 2
1 or X1X2)
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Model Selection

1. “Underfitting”

2. “Overfitting”

3. Model selection criteria
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“Underfitting”

1. Omitted confounders can obscure relationships of interest.

2. If assumptions of linearity and additivity (no interaction)
do not hold, the true relationship may be missed.

3. Next two slides show effect of 1) omitting a confounder, and
2) falsely assuming linearity.
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Omitting A Confounder
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Falsely Assuming Linearity
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How To Avoid Underfitting

Confounding

� Do not rely only on bivariate relationships.

� Measure potential confounders and include in model.

Complexity

� Test for interactions and non-linearities.
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“Overfitting”
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“Overfitting”
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“Overfitting”
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“Overfitting”
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“Overfitting”

� More complex models will always “fit” the data better.

� Overfitting occurs when model fits random fluctuations in
data.

� Overfit models may perform well on the training (original)
data, but may perform very poorly on test (new) data.

� Need to balance quality of fit and parsimony (simplicity)
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Avoid Overfitting

Rule Of Thumb

� Rule of Thumb: no more than n/10 or n/20 parameters

� If n = 67, no more than 3− 6 parameters
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Adjusted R2

� Adding a variable always increases R2.

� The adjusted R2 “adjusts” for model complexity.

� Adding an additional variable can decrease the adjusted R2.

� Adjusted R2 is a criteria for comparing two potential models.
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Model Selection Criteria

1. R2 = cor(Y , Ŷ )2

2. Adjusted R2

3. Akaike Information Criterion (AIC)

4. Bayesian Information Criterion (BIC)
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Nested Models

� Two models are nested if predictors in one model are subset
of predictors in other.

Nested Models

1. Y = β0 + β1X1 + β2X2

2. Y = β0 + β1X1 + β2X2 + β3X3

Non-Nested Models

1. Y = β0 + β1X1 + β2X2

2. Y = β0 + β1X1 + β3X3 + β4X4
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F Test for Nested Models

� If two models are nested, larger model will “fit” better.

� Does the improvement in fit justify additional complexity?

� Two nested models can be compared with an F test.
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F Test for Nested Models

Table: Example (n = 100)

Small Model Large Model
p 3 5

Σe2 130 120

F =
130−120

5−3
120

100−5−1

= 3.92 (59)

p-val = 0.023 ⇒ choose larger model
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Criterion-Based Approach

� Choose a set of potential models that are meaningful

� Choose a final model using a criterion such as AIC

Remember:

� Don’t assume linearity and additivity (no interactions)

� Avoid overfitting

� Look at model diagnostics
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Model Selection

Two people modeling the same data set will usually have different
final models.

“All models are wrong, but some are useful.”

– George Box
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Computer Lab #3

Multiple regression and model selection
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